翻訳と辞書
Words near each other
・ Randomized rounding
・ Randomized weighted majority algorithm
・ Randomness
・ Randomness extractor
・ Randomness merger
・ Randomness tests
・ Random—Burin—St. George's
・ Randon
・ Randonnai
・ Randonneuring
・ Randonneurs USA
・ Randonnée
・ Randoon
・ Random coil index
・ Random compact set
Random coordinate descent
・ Random digit dialing
・ Random Disc Records
・ Random dopant fluctuation
・ Random dot stereogram
・ Random dungeon
・ Random dynamical system
・ Random early detection
・ Random effects model
・ Random element
・ Random Encounter
・ Random encounter
・ Random Encounter (band)
・ Random Encounter (film)
・ Random Encounters


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Random coordinate descent : ウィキペディア英語版
Random coordinate descent
Randomized (Block) Coordinate Descent Method is an optimization algorithm popularized by Nesterov (2010) and Richtárik and Takáč (2011). The first analysis of this method, when applied to the problem of minimizing a smooth convex function, was performed by Nesterov (2010). In Nesterov's analysis the method needs to be applied to a quadratic perturbation of the original function with an unknown scaling factor. Richtárik and Takáč (2011) give iteration complexity bounds which do not require this, i.e., the method is applied to the objective function directly. Furthermore, they generalize the setting to the problem of minimizing a composite function, i.e., sum of a smooth convex and a (possibly nonsmooth) convex block-separable function:
F(x) = f(x) + \Psi(x),
where \Psi(x) = \sum_^n \Psi_i(x^), x\in R^N is decomposed into n blocks of variables/coordinates: x = (x^,\dots,x^) and \Psi_1,\dots, \Psi_n are (simple) convex functions.
Example (block decomposition): If x = (x_1,x_2,\dots,x_5) \in R^5 and n = 3 , one may choose x^ = (x_1,x_3), x^ = (x_2,x_5) and x^ = x_4 .
Example (block-separable regularizers):
# n=N; \Psi(x) = \|x\|_1 = \sum_^n |x_i|
# N = N_1 + N_2 + \dots + N_n; \Psi(x) = \sum_^n \|x^\|_2 , where x^\in R^ and \|\cdot\|_2 is the standard Euclidean norm.
==Algorithm==
Consider the optimization problem
: \min_ f(x),
where f is a convex and smooth function.
Smoothness: By smoothness we mean the following: we assume
the gradient of f is coordinate-wise Lipschitz continuous
with constants L_1, L_2, \dots , L_n. That is, we assume that
:|\nabla_i f(x + h e_i) - \nabla_i f(x)| \leq L_i |h|,
for all x \in R^n and h \in R , where \nabla_i denotes the partial derivative with respect to variable x^.
Nesterov, and Richtarik and Takac showed that the following algorithm converges to the optimal point:
Input: x_0 \in R^n //starting point
Output: x
set x=x_0
for k=1,... do
choose coordinate i\in \, uniformly at random
update x^ = x^ - \frac1 \nabla f_i(x)
endfor;

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Random coordinate descent」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.